martes, 16 de octubre de 2012

PROTON



 es una subatómica con una carga eléctrica elemental positiva 1 (1,6 × 10-19 C). igual en valor absoluto y de signo contrario a la del electrón, y una masa 1.836 veces superior a la de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 1035 años, aunque algunas teorías predicen que el protón puede desintegrarse en otras partículas
El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos. En un átomo, el número de protones en el núcleo determina las propiedades químicas del átomo y qué elemento químico es. El núcleo del isótopo más común del átomo de hidrógeno (también el átomo estable más simple posible) está formado por un único protón. Al tener igual carga, los protones se repelen entre sí. Sin embargo, pueden estar agrupados por la acción de la fuerza nuclear fuerte, que a ciertas distancias es superior a la repulsión de la fuerza electromagnética. No obstante, cuando el átomo es grande (como los átomos de Uranio), la repulsión electromagnética puede desintegrarlo progresivamente.



ELEMENTOS SEMICONDUCTORES DE LA ELECTRICIDAD



Semiconductor es un elemento que se comporta como un conductor o como aislante dependiendo de diversos factores, como por ejemplo el campo eléctrico o magnético, la presión, la radiación que le incide, o la temperatura del ambiente en el que se encuentre. Los elementos químicos semiconductores de la tabla periódica se indican en la tabla adjunta. El elemento semiconductor más usado es el silicio, el segundo el germanio, aunque idéntico comportamiento presentan las combinaciones de elementos de los grupos 12 y 13 con los de los grupos 14 y 15 respectivamente (AsGa, PIn, AsGaAl, TeCd, SeCd y SCd). Posteriormente se ha comenzado a emplear también el azufre. La característica común a todos ellos es que son tetravalentes, teniendo el silicio una configuración electrónica s²p².

lunes, 15 de octubre de 2012

ELEMENTOS AISLANTES DE LA ELECTRICIDAD



El aislamiento eléctrico se produce cuando se cubre un elemento de una instalación eléctrica con un material que no es conductor de la electricidad, es decir, un material que resiste el paso de la corriente a través del elemento que recubre y lo mantiene en su trayectoria a lo largo del conductor. Dicho material se denomina aislante eléctrico.
una bobada entre materiales aislantes y conductores
Cinta aislante eléctrica.
La diferencia de los distintos materiales es que los aislantes son materiales que presentan gran resistencia a que las cargas que lo forman se desplacen y los conductores tienen cargas libres y que pueden moverse con facilidad.
De acuerdo con la teoría moderna de la materia (comprobada por resultados experimentales), los átomos de la materia están constituidos por un núcleo cargado positivamente, alrededor del cual giran a gran velocidad cargas eléctricas negativas. Estas cargas negativas, los electrones, son indivisibles e idénticas para toda la materia.
En los elementos llamados conductores, algunos de estos electrones pueden pasar libremente de un átomo a otro cuando se aplica una diferencia de potencial (o tensión eléctrica) entre los extremos del conductor.




ELEMENTOS CONDUCTORES DE LA ELECTRICIDAD



Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material enestado de plasma.
Para el transporte de energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el mejor conductor es laplata, pero debido a su elevado precio, los materiales empleados habitualmente son el cobre (en forma de cables de uno o varios hilos), o el aluminio; metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre, es sin embargo un material tres veces más ligero, por lo que su empleo está más indicado en líneas aéreas de transmisión de energía eléctrica en las redes de alta tensión.1 A diferencia de lo que mucha gente cree, el oro es levemente peor conductor que el cobre, sin embargo, se utiliza en bornes de baterías y conectores eléctricos debido a su durabilidad y “resistencia” a la corrosión.
La conductividad eléctrica del cobre puro fue adoptada por la Comisión Electrotécnica Internacional en 1913 como la referencia estándar para esta magnitud, estableciendo el International Annealed Copper Standard (Estándar Internacional del Cobre Recocido) o IACS. Según esta definición, la conductividad del cobre recocido medida a 20 °C es igual a 58.0  MS/m.2 A este valor es a lo que se llama 100% IACS y la conductividad del resto de los materiales se expresa como un cierto porcentaje de IACS. La mayoría de los metales tienen valores de conductividad inferiores a 100% IACS pero existen excepciones como la plata o los cobres especiales de muy alta conductividad designados C-103 y C-110.






ELECTRICIDAD




Es el conjunto de fenómenos relacionados con la atracción de cargas negativas o positivas. Se manifiesta en una gran variedad de fenómenos conocidos como la iluminación, electricidad estática, inducción electromagnética y el flujo de corriente eléctrica
La electricidad es tan versátil que tiene un sinnúmero de aplicaciones que incluyen el transporte, climatización, iluminación y computación. La electricidad es la columna de la industria moderna, y se espera que se mantenga así en un futuro cercano




MODELO ATOMICO DE Bohr



En 1911 el joven físico danés Niels Bohr se había desplazado a Inglaterra como investigador visitante, incorporándose finalmente al equipo de Rutherford, en donde tuvo oportunidad de estudiar de cerca el modelo atómico planetario. Sólo unos años más tarde Bohr propondría un nuevo modelo que permitía superar las dificultades del anterior y explicaba, con una excelente precisión, el origen de los espectros atómicos y sus características.
Por aquel entonces los trabajos de Planck y de Einstein, habían introducido en la física la idea de cuantificación. En los fenómenos relacionados con la absorción o la emisión de radiación por la materia la energía variaba de una forma discontinua, como a «saltos» o cuantos. Bohr fue capaz de efectuar la síntesis de ambos esquemas, el modelo planetario de Rutherford y la cuantificación de la energía de Planck-Einstein, construyendo de este modo su teoría del átomo.
Las siguientes ideas fundamentales describen lo esencial de este modelo atómico y se conocen como postulados de Bohr:
1. Las órbitas que describen los electrones en torno al núcleo son estacionarias, es decir, el electrón gira en ellas sin emitir ni absorber energía. A cada órbita le corresponde por tanto una energía definida e igual a la que posee el electrón cuando está en ella.
2. La emisión o la absorción de radiación por un átomo va acompañada de saltos electrónicos de una órbita a otra de diferente energía. La radiación emitida o absorbida tiene una frecuencia Modelos atómicos de la Historia
tal que verifica la ecuación:
E2 - E1 = hModelos atómicos de la Historia
donde E2 y E1 representan las energías correspondientes a las órbitas entre las cuales se produce la transición, siendoh la constante de Planck.
Como se pone de manifiesto en los anteriores postulados, Bohr admite la utilidad de la física clásica para explicar algunos aspectos de su modelo y a la vez la rechaza para explicar otros. El problema de la inestabilidad del átomo planteado con anterioridad para el modelo planetario de Rutherford, lo resuelve Bohr imponiendo el carácter estacionario de las órbitas, lo cual equivale a negar, en ese punto, la validez de la física clásica y aceptar la idea de cuantificación.



MODELO ATOMICO DE RUTHERFORD



Interesado por el fenómeno de la radiactividad, Ernest Rutherford (1871-1937) estudió los rayos emitidos por los materiales radiactivos, determinó su naturaleza y estableció una clasificación entre ellos denominándolos rayos Modelos atómicos de la Historia
, rayosModelos atómicos de la Historia
y rayosModelos atómicos de la Historia
. 
Los rayos Modelos atómicos de la Historia
correspondían a partículas cargadas positivamente, los rayos Modelos atómicos de la Historia
eran chorros de electrones y los rayos Modelos atómicos de la Historia
consistían en ondas electromagnéticas semejantes a la luz, pero mucho más energéticas.
Sus investigaciones sobre las partículas Modelos atómicos de la Historia
le llevaron a identificarlas como átomos de helio que habían perdido sus electrones. Esta idea de relacionar partículas positivas con fracciones de átomos le permitiría más tarde descubrir el protón como la parte positiva (núcleo) del átomo más sencillo, el de hidrógeno.
Después de comprender su naturaleza, Rutherford decidió emplear las partículas Modelos atómicos de la Historia
como instrumentos para la investigación de la materia. Bombardeó una delgada lámina de oro con partículas Modelos atómicos de la Historia
procedentes de materiales radiactivos observando que, en su mayor parte, las partículas atravesaban la lámina sin sufrir desviaciones y sólo una pequeña fracción era fuertemente desviada. Estos resultados hacían insostenible un modelo compacto de átomo como el propuesto por Thomson y apuntaban a otro en el cual predominasen los espacios vacíos sobre los llenos.
Tomando como base los resultados de sus experimentos, Rutherford ideó un modelo atómico en el cual toda la carga positiva y la mayor parte de la masa del átomo estaban situadas en un reducido núcleo central que denominó núcleo atómico. Los electrones atraídos por fuerzas electrostáticas girarían en torno al núcleo describiendo órbitas circulares de un modo semejante a como lo hacen los planetas en torno al Sol, por efecto en este caso de fuerzas gravitatorias.
El átomo nucleado de Rutherford, también llamado modelo planetario por su semejanza con un diminuto sistema solar, consiguió explicar los resultados obtenidos en la dispersión de partículas Modelos atómicos de la Historia
por láminas metálicas. Según este modelo, la mayor parte de las partículas Modelos atómicos de la Historia
atravesarían los átomos metálicos sin colisionar con el núcleo. La poca densidad de materia de la envoltura electrónica sería una barrera despreciable para este tipo de partículas. Sólo en el caso poco probable de que el proyectil encontrase un núcleo de oro en su camino retrocedería bruscamente debido a la mayor masa de éste.